On Time Synchronization Issues in Time-Sensitive Networks with Regulators and Nonideal Clocks

part of the work has been published with Jean-Yves Le Boudec in POMACS, June 2020, doi:10.1145/3392145

Ludovic Thomas

STORE 14. January 15th, 2021
Introduction

We focus on time-sensitive networks

- IEEE TSN
- IETF Detnet

\{ Goals:
 - Bounded latency
 - No losses \}
We focus on time-sensitive networks

- IEEE TSN
- IETF Detnet

Goals:
- Bounded latency
- No losses

FIFO per class

Class-based network element
We focus on **time-sensitive networks**

- IEEE TSN
- IETF Detnet

Goals:

- Bounded latency
- No losses

FIFO per class
Time sensitive networks: analysis with Network Calculus
Time sensitive networks: analysis with **Network Calculus**

Arrival curve α_f of f

- **Leaky-bucket**
 - Data
 - Rate r
 - Time interval t

- **Network element**
 - Input: f
 - Output:
Time sensitive networks: analysis with **Network Calculus**

Arrival curve α_f of f

- **Leaky-bucket**
 - **data**
 - **rate** r
 - **time interval** t

Service curve of the element

Network element
Time sensitive networks: analysis with **Network Calculus**

- Computes delay bounds
- Computes burst increase bounds
Time sensitive networks: analysis with **Network Calculus**

New: join the network calculus mailing list!

https://lists.geant.org/sympa/info/netcal-list
Tight delay bounds with **Traffic Regulators**

$T = \{ b, b \}$

$D \rightarrow D' = D(b)$

Shaping for free

Control of the output arrival curve
Tight delay bounds with **Traffic Regulators**

Per-flow regulator

\[
\text{rate} \equiv r, \quad \text{burst} \equiv b
\]

\[b^* > b\]

Network Element

\[D\]
Tight delay bounds with **Traffic Regulators**

Introduction

Tight delay bounds with Traffic Regulators
Tight delay bounds with **Traffic Regulators**

- **Introduction**

- **Per-flow regulator**

\[
\begin{align*}
\text{rate} & \triangleq r \\
\text{burst} & \triangleq b
\end{align*}
\]

- **a) Control of the output arrival curve**

- **Network Element**

- **Per-flow regulator**

\[b^* > b \]

- **D**

- **Burst shaping for free**

- **Control of the output arrival curve**

- **Ludovic Thomas**

On Time Synchronization Issues in Time-Sensitive Networks

STORE-14 2021-01-15

7 / 24
Tight delay bounds with Traffic Regulators

a) Control of the output arrival curve

\[
\text{rate } \triangleq r \quad \text{burst } \triangleq b
\]

b) Shaping for free

\[D' = D\]
Introduction

Tight delay bounds with **Traffic Regulators**

- a) Control of the output arrival curve
 - \(\{ \text{rate} \} \)
 - \(\{ \text{burst} \}_f \)
 - \(r, b \)
 - \(f \)
 - \(b^* > b \)

- b) Shaping for free

\(D' = D \)

Ludovic Thomas
On Time Synchronization Issues in Time-Sensitive Networks
STORE-14 2021-01-15 8 / 24
Tight delay bounds with **Traffic Regulators**

- **FIFO Interleaved regulator**

\[
\begin{aligned}
D' = D \\
r, b, f \\
b^* > b
\end{aligned}
\]

- **Per-flow regulator (PFR) and Interleaved Regulator (IR)**

\[
\begin{aligned}
\{ \text{rate} \} \\
\{ \text{burst} \}_f
\end{aligned}
\]

\[
f, b, f
\]

⇒ A building block of IEEE TSN, called **Asynchronous Traffic Shaping (ATS)**.
Regulators measure **elapsed time**

\[\forall t, \text{bits} (t) \leq rt + b \]

\[
\begin{cases}
\text{rate} \triangleq r \\
\text{burst} \triangleq b
\end{cases}
\]
Regulators measure \textit{elapsed time}

\[\forall t, \text{bits}(t) \leq rt + b \left\{ \begin{array}{l}
\text{rate} \triangleq r \\
\text{burst} \triangleq b
\end{array} \right\} \]

- Discussions in TSN ATS (Asynchronous Traffic Shaping) [IEEE, 2019].
- In our paper: theoretical foundations to address the problem.
Contributions

- **Time model** for \{ non-synchronized, synchronized \} networks.

- A toolbox of **Network Calculus** results for \{ non-synchronized, synchronized \} networks.

- Analysis of regulators \{ PFR, IR \} in \{ non-synchronized, synchronized \} networks.
Model for non-synchronized clocks

Definitions and terminology for synchronization networks [ITU, 1996]

\[
h_i(t) - t = x_{i,0} + t\gamma_{i,0} + w(t) + \phi(t)
\]
Model for non-synchronized clocks

Definitions and terminology for synchronization networks [ITU, 1996]

\[
h_i(t) - t = x_i,0 + ty_i,0 + w(t) + \psi(t)
\]
Model for non-synchronized clocks

Definitions and terminology for synchronization networks [ITU, 1996]

\[h_i(t) - t = x_{i,0} + ty_{i,0} + w(t) + \psi(t) \leq y_{\text{max}} t \]
Model for non-synchronized clocks

Definitions and terminology for synchronization networks [ITU, 1996]

\[h_i(t) - t = x_{i,0} + ty_{i,0} + w(t) + \psi(t) \]
Model for non-synchronized clocks

Definitions and terminology for synchronization networks [ITU, 1996]

\[h_i(t) - t = x_{i,0} + t y_{i,0} + w(t) + \psi(t) \leq \eta_i \]
Model for non-synchronized clocks

\[d_{g\rightarrow i}(t) = h_g \circ h_i^{-1}(t) \]
Model for non-synchronized clocks

\[d_{g \to i}(t) = h_g \circ h_i^{-1}(t) \]
Model for non-synchronized clocks

\[\forall i, g \frac{1}{\rho} (t - s - \eta) \leq d_{g \rightarrow i}(t) - d_{g \rightarrow i}(s) \leq (t - s) \rho + \eta \]

TSN: \[\rho = 1 + 200ppm \]
\[\eta = 4ns \]
Model for synchronized clocks

\[\forall i, g \]
\[
\left\{ \begin{array}{c}
\frac{1}{\rho} (t - s - \eta) \leq d_{g \rightarrow i}(t) - d_{g \rightarrow i}(s) \leq (t - s) \rho + \eta \\
|d_{g \rightarrow i}(t) - t| \leq \Delta
\end{array} \right.
\]

TSN: \(\Delta = 1 \mu s \)
Toolbox for changing the observing clock
Toolbox for changing the observing clock

\[f: \mathcal{H}_i \rightarrow \alpha_f^\mathcal{H}_i \]

\[\text{Device } j \]

\[\text{data} \]

\[b \quad t \]

Ludovic Thomas

On Time Synchronization Issues in Time-Sensitive Networks

STORE-14 2021-01-15 15 / 24
Toolbox for changing the observing clock

\[\mathcal{H}_g \rightarrow ? \]

\[\mathcal{H}_i \rightarrow \alpha_f \mathcal{H}_i \]

Device \(j \)

\[\text{data} \]

\[t \]

\[b \]
Toolbox for changing the observing clock

\[\mathcal{H}_i \rightarrow \alpha_f \mathcal{H}_i \]

Non-synchronized
\[\eta, \rho \]

\[\mathcal{H}_g \rightarrow \alpha_f \mathcal{H}_g \]

Device \(j \)
Toolbox for changing the observing clock

\[\mathcal{H}_g \xrightarrow{\alpha} \mathcal{H}_g \]

Synchronized
\[\eta, \rho, \Delta \]

\[\mathcal{H}_i \xrightarrow{\alpha} \mathcal{H}_i \]
Instabilities with non-adapted regulators

Usual configuration of regulators

= Non-adapted regulator
Instabilities with non-adapted regulators

Usual configuration of regulators

= Non-adapted regulator

Non-synchronized networks:

- Per-flow regulator → penalty
- Interleaved regulator → unstable

∀ ∆ > 0

Ludovic Thomas
On Time Synchronization Issues in Time-Sensitive Networks
Instabilities with non-adapted regulators

Usual configuration of regulators

= Non-adapted regulator

Non-synchronized networks:

Per-flow regulator

Interleaved regulator \{ unstable

Synchronized networks:

Per-flow regulator \rightarrow penalty [\Delta, 4\Delta]

Interleaved regulator \rightarrow unstable \forall \Delta > 0
Adversarial synchronized clocks for a non-adapted IR (=ATS) (1/3)
Adversarial synchronized clocks for a non-adapted IR (=ATS) (1/3)
Adversarial synchronized clocks for a non-adapted IR (=ATS) (2/3)
Adversarial synchronized clocks for a non-adapted IR (≡ATS) (2/3)

FIFO system

Source 1
\(H_1 \)

Source 2
\(H_2 \)

\(D_{\text{max}} = 5 \)

IR

Source 1, \(H_1 \)

Source 2, \(H_2 \)

Sources 1 + 2, \(H_{\text{IR}} \)
Adversarial synchronized clocks for a non-adapted IR (=ATS) (2/3)

Instability of non-adapted regulators

FIFO system

Source 1, \mathcal{H}_1

Source 2, \mathcal{H}_2

Sources 1 + 2, \mathcal{H}_{IR}

$Ludovic Thomas$

On Time Synchronization Issues in Time-Sensitive Networks

STORE-14 2021-01-15
Adversarial synchronized clocks for a non-adapted IR (=ATS) (3/3)

Validation and extension through ns-3 simulations.

Example at low data rates:

- 3 sources @ 147 kB/s
- 1 queuing element @ 437.5 kB/s
- $\Delta = 1\mu s$, $\rho = 1+100$ ppm
- using adversarial clocks
- \Rightarrow red line is Network Calculus delay bound assuming perfect clocks

Work by Guillermo Aguirre
Computing the configuration of regulators

How to configure the regulators?

∀ flow f

Source $\mathcal{H}_{\text{source}}$ → Network element $\mathcal{H}_{\text{Reg}_1}$ → Regulator → Network element $\mathcal{H}_{\text{Reg}_2}$ → Regulator → Network element $\mathcal{H}_{\text{Reg}_3}$ → Regulator → Network element \mathcal{H}_{TAI}
Computing the configuration of regulators

How to configure the regulators?

Question: What parameters?

∀ flow f

Source \rightarrow Network element \rightarrow Regulator \rightarrow Network element \rightarrow Regulator \rightarrow Network element \rightarrow Regulator \rightarrow Network element

H_{source} \rightarrow H_{Reg_1} \rightarrow H_{Reg_2} \rightarrow H_{Reg_3} \rightarrow H_{TAI}
How to configure the regulators?

Question: What parameters?

Question: What is the delay bound?
Two methods for synchronized and non-synchronized networks

Rate-and-burst cascade Works with PFR or IR

Source \(\mathcal{H}_{\text{source}} \) → Network element \(f \) → Regulator \(\mathcal{H}_{\text{Reg}_1} \) → Network element → Regulator \(\mathcal{H}_{\text{Reg}_2} \) → Network element → Regulator \(\mathcal{H}_{\text{Reg}_3} \) → Network element
Two methods for synchronized and non-synchronized networks

Rate-and-burst cascade Works with PFR or IR

- **Source** \(H_{\text{source}} \) → **Network element** \(H_{\text{Reg}_1} \) → **Regulator** → **Network element** \(H_{\text{Reg}_2} \) → **Regulator** → **Network element** \(H_{\text{Reg}_3} \) → **Network element**

 - Rate: \(\rho \)
 - Burst: \(b_0 + \eta \rho \)

ADAM Works with PFR only

- **Source** \(H_{\text{source}} \) → **Network element** \(H_{\text{Reg}_1} \) → **PFR** → **Network element** \(H_{\text{Reg}_2} \) → **PFR** → **Network element** \(H_{\text{Reg}_3} \) → **Network element**

 - Rate: \(W \rho \)
 - Burst: \(b_0 \)
Performance comparison

Increase of the ETE delay bound wrt ideal clocks.
Conclusion

- **Time-model** for bounding the behavior of the clocks in the network.

- **Instability** of the non-adapted ATS regulator for any $\Delta > 0$.

- Two methods for **configuring the regulators** in a network, relying on a **Network Calculus toolbox**.
Conclusion

- **Time-model** for bounding the behavior of the clocks in the network.
- **Instability** of the non-adapted ATS regulator **for any** $\Delta > 0$.
- Two methods for configuring the regulators in a network, relying on a **Network Calculus toolbox**.

Future work:
- Improvements on the ADAM method.
- Simulation of different (more realistic) clock models in ns-3.
- The toolbox could be of interest when studying other technologies / TSN components.