

On Time Synchronization Issues in Time-Sensitive Networks with Regulators and Nonideal Clocks

part of the work has been published with Jean-Yves Le Boudec in POMACS, June 2020, doi:10.1145/3392145

Ludovic Thomas

STORE 14. January 15th, 2021

Ludovic Thomas

We focus on time-sensitive networks

IEEE TSN
IETF Detnet
Goals:
Bounded latency
No losses

We focus on time-sensitive networks

FIFO per class

We focus on time-sensitive networks

IEEE TSN
IETF Detnet
Goals:
Bounded latency
No losses

FIFO per class

Time sensitive networks: analysis with Network Calculus

Time sensitive networks: analysis with Network Calculus

Time sensitive networks: analysis with Network Calculus

Time sensitive networks: analysis with Network Calculus

- Computes delay bounds
- Computes burst increase bounds

Time sensitive networks: analysis with Network Calculus

New: join the network calculus mailing list!

https://lists.geant.org/sympa/info/netcal-list

Ludovic Thomas

Tight delay bounds with Traffic Regulators

Ludovic Thomas

Tight delay bounds with Traffic Regulators

Ludovic Thomas

Tight delay bounds with Traffic Regulators

Per-flow regulator (PFR) and Interleaved Regulator (IR)

 \Rightarrow A building block of IEEE TSN, called **Asynchronous Traffic Shaping**

(ATS).

Regulators measure elapsed time

$$\forall t, \text{ bits } (t) \leq rt + b \begin{cases} \text{rate} \triangleq r \\ \text{burst} \triangleq b \end{cases}$$

Regulators measure elapsed time

$$\forall t, \text{ bits } (t) \leq rt + b \begin{cases} \text{rate } \triangleq r \\ \text{burst } \triangleq b \end{cases}$$

Discussions in TSN ATS (Asynchronous Traffic Shaping) [IEEE, 2019].

In our paper: theoretical foundations to address the problem.

Ludovic Thomas

Contributions

 • Time model for
$$\begin{cases} non-synchronized \\ synchronized \end{cases}$$
 networks.

 • A toolbox of Network Calculus results for $\begin{cases} non-synchronized \\ synchronized \end{cases}$ networks.

 • Analysis of regulators $\begin{cases} PFR \\ IR \end{cases}$ in $\begin{cases} non-synchronized \\ synchronized \end{cases}$ networks.

Ludovic Thomas

Definitions and terminology for synchronization networks [ITU, 1996]

$$h_i(t) - t = x_{i,0} + ty_{i,0} + w(t) + \psi(t)$$

Definitions and terminology for synchronization networks [ITU, 1996]

Instabilities with non-adapted regulators

Usual configuration of regulators = Non-adapted regulator

Instabilities with non-adapted regulators

Usual configuration of regulators = Non-adapted regulator

 Non-synchronized networks: Per-flow regulator Interleaved regulator

Instabilities with non-adapted regulators

Usual configuration of regulators = Non-adapted regulator

Non-synchronized networks:
Per-flow regulator
Interleaved regulator

• Synchronized networks: Per-flow regulator \rightarrow penalty $[\Delta, 4\Delta]$ Interleaved regulator \rightarrow unstable $\forall \Delta > 0$ Adversarial synchronized clocks for a non-adapted IR (=ATS) (1/3)

Adversarial synchronized clocks for a non-adapted IR (=ATS) (1/3)

STORE-14 2021-01-15 18 / 24

18/24 STORE-14 2021-01-15

Adversarial synchronized clocks for a non-adapted IR (=ATS) (3/3)

Validation and extension through ns-3 simulations.

Example at low data rates:

- 3 sources @ 147 kB/s
- 1 queuing element @ 437.5 kB/s
- $\Delta = 1 \mu \mathrm{s}, \ \rho = 1 + 100 \mathrm{ppm}$
- using adversarial clocks
- ⇒ red line is Network Calculus delay bound assuming perfect clocks

Work by Guillermo Aguirre

Ludovic Thomas

Computing the configuration of regulators

How to configure the regulators ?

 \forall flow f

Computing the configuration of regulators

How to configure the regulators ?

Computing the configuration of regulators

How to configure the regulators ?

Ludovic Thomas

Two methods for synchronized and non-synchronized networks

Two methods for synchronized and non-synchronized networks

ADAM Works with PFR only

Performance comparison

Performance comparison

Increase of the ETE delay bound wrt ideal clocks.

Conclusion

- **Time-model** for bounding the behavior of the clocks in the network.
- Instability of the non-adapted ATS regulator for any $\Delta > 0$.
- Two methods for **configuring the regulators** in a network, relying on a **Network Calculus toolbox**.

Conclusion

- **Time-model** for bounding the behavior of the clocks in the network.
- **Instability** of the non-adapted ATS regulator for any $\Delta > 0$.
- Two methods for **configuring the regulators** in a network, relying on a **Network Calculus toolbox**.

Future work:

- Improvements on the ADAM method.
- Simulation of different (more realistic) clock models in ns-3.
- The toolbox could be of interest when studying other technologies / TSN components.

Bibliography I

IEEE (2019).

Draft Standard for Local and Metropolitan Area Networks—Bridges and Bridged Networks—Amendment: Asynchronous Traffic Shaping. *IEEE P802.1Qcr/D2.0*, In IEEE802.1 private repository. Access credentials: User: 'p8021' Password: 'go_wildcats'.

http://www.ieee802.org/1/files/private/cr-drafts/d2/802-1Qcr-d2-0.pdf.

ITU (1996). Definitions and terminology for synchronization networks. *ITU G.810*. https://www.itu.int/rec/T-REC-G.810-199608-I/en.